Class: Regression

Regression()

new Regression()

Creates a set of regression objects using the constructor from emscripten
Properties:
Name Type Description
Module.RegressionCpp function constructor from emscripten
Source:

Methods

getNumHiddenLayers() → {Number}

Returns the number of hidden layers in a MLP.
Source:
Returns:
k values
Type
Number

process(input) → {Array}

Deprecated! Use run() instead
Parameters:
Name Type Description
input
Source:
Returns:
Type
Array

reset() → {Boolean}

Returns the model set to its initial configuration.
Source:
Returns:
true indicates successful initialization
Type
Boolean

run(input) → {Array}

Runs feed-forward regression on input
Parameters:
Name Type Description
input Array An array of features to be processed. Non-arrays are converted.
Source:
Returns:
output - One number for each model in the set
Type
Array

setNumEpochs(numEpochs)

Sets the number of epochs for MLP training.
Parameters:
Name Type Description
numEpochs Number
Source:

setNumHiddenLayers(numHiddenLayers)

Sets the number of hidden layers for an MLP.
Parameters:
Name Type Description
numHiddenLayers Number
Source:

train(trainingSet) → {Boolean}

Trains the models using the input. Starts training from a randomized state.
Parameters:
Name Type Description
trainingSet Object An array of training examples
Source:
Returns:
true indicates successful training
Type
Boolean