RapidLib  v2.2.0
A simple library for interactive machine learning
regressionTemplate< T > Class Template Referencefinal

#include <regression.h>

Inheritance diagram for regressionTemplate< T >:
Inheritance graph
Collaboration diagram for regressionTemplate< T >:
Collaboration graph

Public Member Functions

 regressionTemplate ()
 
 regressionTemplate (const std::vector< trainingExampleTemplate< T > > &trainingSet)
 
 regressionTemplate (const int &numInputs, const int &numOutputs)
 
 ~regressionTemplate ()
 
bool train (const std::vector< trainingExampleTemplate< T > > &trainingSet) override
 
float getTrainingProgress ()
 
std::vector< size_t > getNumEpochs () const
 
void setNumEpochs (const size_t &epochs)
 
std::vector< size_t > getNumHiddenLayers () const
 
void setNumHiddenLayers (const int &num_hidden_layers)
 
std::vector< size_t > getNumHiddenNodes () const
 
void setNumHiddenNodes (const int &num_hidden_nodes)
 
- Public Member Functions inherited from modelSet< T >
 modelSet ()
 
virtual ~modelSet ()
 
bool reset ()
 
std::vector< T > run (const std::vector< T > &inputVector)
 
std::string getJSON ()
 
void writeJSON (const std::string &filepath)
 
bool putJSON (const std::string &jsonMessage)
 
bool readJSON (const std::string &filepath)
 

Additional Inherited Members

- Protected Member Functions inherited from modelSet< T >
void threadTrain (std::size_t i, const std::vector< trainingExampleTemplate< T > > &training_set)
 
- Protected Attributes inherited from modelSet< T >
std::vector< baseModel< T > * > myModelSet
 
int numInputs
 
std::vector< std::string > inputNames
 
int numOutputs
 
bool isTraining
 
bool isTrained
 

Detailed Description

template<typename T>
class regressionTemplate< T >

Class for implementing a set of regression models.

This doesn't do anything modelSet can't do. But, it's simpler and more like wekinator. It has some calls that are specifc to neural networks

Constructor & Destructor Documentation

◆ regressionTemplate() [1/3]

template<typename T >
regressionTemplate< T >::regressionTemplate

with no arguments, just make an empty vector

◆ regressionTemplate() [2/3]

template<typename T >
regressionTemplate< T >::regressionTemplate ( const std::vector< trainingExampleTemplate< T > > &  trainingSet)

create based on training set inputs and outputs

◆ regressionTemplate() [3/3]

template<typename T >
regressionTemplate< T >::regressionTemplate ( const int &  numInputs,
const int &  numOutputs 
)

create with proper models, but not trained

◆ ~regressionTemplate()

template<typename T >
regressionTemplate< T >::~regressionTemplate ( )
inline

destructor

Member Function Documentation

◆ getNumEpochs()

template<typename T >
std::vector< size_t > regressionTemplate< T >::getNumEpochs

Check how many training epochs each model will run. This feature is temporary, and will be replaced by a different design.

◆ getNumHiddenLayers()

template<typename T >
std::vector< size_t > regressionTemplate< T >::getNumHiddenLayers

Check how many hidden layers are in each model. This feature is temporary, and will be replaced by a different design.

◆ getNumHiddenNodes()

template<typename T >
std::vector< size_t > regressionTemplate< T >::getNumHiddenNodes

Check how many hidden nodes are in each model. This feature is temporary, and will be replaced by a different design.

◆ getTrainingProgress()

template<typename T >
float regressionTemplate< T >::getTrainingProgress

Check how far the training has gotten. Averages progress over all models in training

◆ setNumEpochs()

template<typename T >
void regressionTemplate< T >::setNumEpochs ( const size_t &  epochs)

Call before train, to set the number of training epochs

◆ setNumHiddenLayers()

template<typename T >
void regressionTemplate< T >::setNumHiddenLayers ( const int &  num_hidden_layers)

Set how many hidden layers are in all models. This feature is temporary, and will be replaced by a different design.

◆ setNumHiddenNodes()

template<typename T >
void regressionTemplate< T >::setNumHiddenNodes ( const int &  num_hidden_nodes)

Set how many hidden layers are in all models. This feature is temporary, and will be replaced by a different design.

◆ train()

template<typename T >
bool regressionTemplate< T >::train ( const std::vector< trainingExampleTemplate< T > > &  trainingSet)
overridevirtual

Train on a specified set, causes creation if not created

Reimplemented from modelSet< T >.


The documentation for this class was generated from the following files: