10 #ifndef NEURALNETWORK_H
11 #define NEURALNETWORK_H
17 #include "../dependencies/json/json.h"
30 const std::vector<size_t>& which_inputs,
31 const size_t& num_hidden_layers,
32 const size_t& num_hidden_nodes,
33 const std::vector<T>& weights,
34 const std::vector<T>& wHiddenOutput,
35 const std::vector<T>& inRanges,
36 const std::vector<T>& inBases,
50 const std::vector<size_t>& which_inputs,
51 const size_t& num_hidden_layer,
52 const size_t& num_hidden_nodes);
61 T
run(
const std::vector<T>& inputVector)
const override;
63 void reset()
override;
93 std::vector<size_t> whichInputs;
94 size_t numHiddenLayers;
95 size_t numHiddenNodes;
98 std::vector<T> inputLayer;
99 std::vector<std::vector<T> > hiddenLayers;
103 std::vector<std::vector<std::vector<T> > > weights;
104 std::vector<T> wHiddenOutput;
107 std::vector<T> inRanges;
108 std::vector<T> inBases;
113 inline T activationFunction(T)
const;
139 T learningRate { 0.3 };
141 size_t numEpochs { 500 };
142 size_t currentEpoch { 0 };
145 std::vector<std::vector< std::vector<T> > > deltaWeights;
146 std::vector<T> deltaHiddenOutput;
149 T outputErrorGradient;
150 inline T getHiddenErrorGradient(
size_t layer,
size_t neuron);
157 void runInternal(
const std::vector<T>& inputVector, std::vector<T>& inputLayer, std::vector<std::vector<T>>& hiddenLayers, T& outputNeuron)
const;
158 void backpropagate(
const T& desiredOutput);
161 void updateWeights();
Definition: baseModel.h:42
Definition: neuralNetwork.h:26
std::vector< T > getInBases() const
Definition: neuralNetwork.cpp:319
T getOutRange() const
Definition: neuralNetwork.cpp:325
std::vector< T > getWeights() const
Definition: neuralNetwork.cpp:288
T getOutBase() const
Definition: neuralNetwork.cpp:331
void train(const std::vector< trainingExampleTemplate< T > > &trainingSet) override
These pertain to the training, and aren't need to run a trained model //.
Definition: neuralNetwork.cpp:454
neuralNetwork(const size_t &num_inputs, const std::vector< size_t > &which_inputs, const size_t &num_hidden_layers, const size_t &num_hidden_nodes, const std::vector< T > &weights, const std::vector< T > &wHiddenOutput, const std::vector< T > &inRanges, const std::vector< T > &inBases, const T &outRange, const T &outBase)
Definition: neuralNetwork.cpp:41
void setNumHiddenNodes(size_t num_hidden_nodes)
Definition: neuralNetwork.cpp:268
void reset() override
Definition: neuralNetwork.cpp:166
size_t getNumInputs() const override
Definition: neuralNetwork.cpp:236
void setNumHiddenLayers(size_t num_hidden_layers)
Definition: neuralNetwork.cpp:254
void getJSONDescription(Json::Value ¤tModel) override
Definition: neuralNetwork.cpp:338
std::vector< size_t > getWhichInputs() const override
Definition: neuralNetwork.cpp:242
size_t getNumHiddenNodes() const
Definition: neuralNetwork.cpp:262
T run(const std::vector< T > &inputVector) const override
Definition: neuralNetwork.cpp:393
~neuralNetwork()
Definition: neuralNetwork.cpp:161
void setEpochs(const size_t &epochs)
Definition: neuralNetwork.cpp:282
std::vector< T > getInRanges() const
Definition: neuralNetwork.cpp:313
size_t getNumHiddenLayers() const
Definition: neuralNetwork.cpp:248
size_t getEpochs() const
Definition: neuralNetwork.cpp:276
std::vector< T > getWHiddenOutput() const
Definition: neuralNetwork.cpp:307
size_t getCurrentEpoch() const
Definition: neuralNetwork.cpp:580
Definition: trainingExample.h:19